封面新闻记者 吴雨佳
10月10日,毫末智行CEO顾维灏以《自动驾驶3.0时代:大模型将重塑汽车智能化的技术路线》为主题,分享了毫末对于自动驾驶3.0时代AI开发模式的思考。
顾维灏认为,自动驾驶3.0时代与2.0时代相比,其开发模式和技术框架都将发生颠覆性的变革。在自动驾驶2.0时代,以小数据、小模型为特征,以Case任务驱动为开发模式。而自动驾驶3.0时代,以大数据、大模型为特征,以数据驱动为开发模式。
相比2.0时代主要采用传统模块化框架,3.0时代的技术框架会发生颠覆性变化。首先,自动驾驶会在云端实现感知大模型和认知大模型的能力突破,并将车端各类小模型逐步统一为感知模型和认知模型,同时将控制模块也AI模型化。随后,车端智驾系统的演进路线也是一方面会逐步全链路模型化,另一方面是逐步大模型化,即小模型逐渐统一到大模型内。然后,云端大模型也可以通过剪枝、蒸馏等方式逐步提升车端的感知能力,甚至在通讯环境比较好的地方,大模型甚至可以通过车云协同的方式实现远程控车。最后,在未来车端、云端都是端到端的自动驾驶大模型。
顾维灏还详细介绍了毫末DriveGPT大模型在推出200天后的整体进展。首先是DriveGPT训练数据规模提升。截止2023年10月DriveGPT雪湖·海若共计筛选出超过100亿帧互联网图片数据集和480万段包含人驾行为的自动驾驶4D Clips数据。其次是通用感知能力提升,DriveGPT通过引入多模态大模型,实现文、图、视频多模态信息的整合,获得识别万物的能力;同时,通过与NeRF技术整合,DriveGPT实现更强的4D空间重建能力,获得对三维空间和时序的全面建模能力;最后是通用认知能力提升,借助大语言模型,DriveGPT将世界知识引入到驾驶策略中。
顾维灏认为,未来的自动驾驶系统一定是跟人类驾驶员一样,不但具备对三维空间的精确感知测量能力,而且能够像人类一样理解万物之间的联系、事件发生的逻辑和背后的常识,并且能基于这些人类社会的经验来做出更好的驾驶策略,真正实现完全无人驾驶。
顾维灏也给出了毫末基于DriveGPT大模型开发模式的七大应用实践,包括驾驶场景理解、驾驶场景标注、驾驶场景生成、驾驶场景迁移、驾驶行为解释、驾驶环境预测和车端模型开发。
转载请注明出处。